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Introduction

To what extent can we automate assessment of steps in students’
working?

Today
Tomorrow
Ever...
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Current STACK interface
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Calculation and Reasoning

Calculation: “a deliberate process that transforms one or more inputs
into one or more results" (Wikipedia)

Reasoning: to form conclusions, inferences, or judgements.

By definition: we must perform a calculation in automatic assessment.

What forms of reasoning can be reduced to a calculation?
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Reasoning by equivalence
Work line by line: adjacent lines are “equivalent".

log3(x + 17)− 2 = log3(2x) (x > 0, x > −17)
⇔ log3(x + 17)− log3(2x) = 2

⇔ log3

(
x + 17

2x

)
= 2

⇔x + 17
2x

= 32 = 9

⇔x + 17 = 18x
⇔x = 1.

The above is a single mathematical entity: the argument. (For
Christian, et al.)
The above is a single (long) English sentence.
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Importance of RE in undergraduate mathematics

Reasoning by equivalence is important for the following reasons.

1 Start of proof & rigour (deductive geometry?)

2 Contains logic and extended calculation
3 Included in many methods, e.g. solving ODEs.
4 Key part of many pure mathematics proofs

I Induction step
I ε-δ proofs.
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Importance of RE in school mathematics

Reasoning by equivalence is the primary form of reasoning.

1/3 of marks in the IB exams are awarded for RE.
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Reasoning by equivalence has a long history
A “universal scientific language" would enable us to

judge immediately whether propositions presented to us are
proved ... with the guidance of symbols alone, by a sure truly
analytical method.

Chris Sangwin (University of Edinburgh) Calculation and reasoning September 2016 8 / 38



Boole Laws of thought 1854

“to go under, over, and beyond” Aristotle’s logic.

Mathematical foundations involving equations.
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Pell’s Algebra 1668
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Equivalence reasoning and STACK

Goal: develop STACK to assess reasoning by equivalence.
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Equivalence reasoning

Applies to equations.

(x − 5)2 − 16 = 0
⇔ (x − 5)2 = 16
⇔ x − 5 = ± (4)
⇔ x − 5 = 4 or x − 5 = −4
⇔ x = 1 or x = 9

Equivalence class of expressions defined by the solution set.
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Solving an equation

Solving is
progressive transformations;
representatives of the class;
ending in a certain form.

E.g. polynomial equation→ x =? or x =? · · ·
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Design decisions: repeated roots?

x2 − 6 · x = −9
⇔ (x − 3)2 = 0
(Same roots) x − 3 = 0
⇔ x = 3
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Design decisions: which field?

R or C?

x3 − 1 = 0
⇔ (x − 1) ·

(
x2 + x + 1

)
= 0

? x = 1

STACK currently works over C.

x3 − 1 = 0
⇔ (x − 1) ·

(
x2 + x + 1

)
= 0

⇔ x = 1 or x2 + x + 1 = 0

⇔ x = 1 or x =
−(
√

3·i+1)
2 or x =

√
3·i−1
2
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Equating expressions

Similar to equivalence reasoning.
Expressions, (not equations).

2 ·
(
a2 · b2 + b2 · c2 + c2 · a2)− (

a4 + b4 + c4)
= 4 · a2 · b2 −

(
a4 + b4 + c4 + 2 · a2 · b2 − 2 · b2 · c2 − 2 · c2 · a2)

= (2 · a · b)2 −
(
b2 + a2 − c2)2

=
(
2 · a · b + b2 + a2 − c2) · (2 · a · b − b2 − a2 + c2)

=
(
(a + b)2 − c2

)
·
(

c2 − (a− b)2
)

= (a + b + c) · (a + b − c) · (c + a− b) · (c − a + b)

Hidden quantifiers: for all values of all variables.
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Equating expressions vs equivalence reasoning.

|x − 1/2|+ |x + 1/2| = 2.

⇔ |x | = 1

But
|x | − 1 6= |x − 1/2|+ |x + 1/2| = 2.
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Equivalence classes vs explicit steps

Working with equivalence classes of solutions has problems.

(x + 3) · (2− x) = 4
⇔ x + 3 = 4 or 2− x = 4
⇔ x = 1 or x = −2

Two options for the architecture:
Membership of an equivalence class.
Sequence of legitimate steps.

(Good nonsense is surprisingly hard to find.....)
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Implication vs equivalence

a = b
⇒ a2 = b2

E.g. √
3 · x + 4 = 2 +

√
x + 2

⇒ 3 · x + 4 = 4 + 4 ·
√

x + 2 + (x + 2)
⇔ x − 1 = 2 ·

√
x + 2

⇒ x2 − 2 · x + 1 = 4 · x + 8
⇔ x2 − 6 · x − 7 = 0
⇔ (x − 7) · (x + 1) = 0
⇔ x = 7 or x = −1

1 These problems are out of fashion. (SHAME!)
2 Start with equivalence, and progressively add rules for feedback.
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Rational expressions: role of domains?

x2−4
x−2 = 0

? x2 − 4 = 0
⇔ (x − 2) · (x + 2) = 0
⇔ x = −2 or x = 2

Instead
x2−4
x−2 = 0

⇔ (x−2)·(x+2)
x−2 = 0

⇔ x + 2 = 0
⇔ x = −2
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STACK and RE

Working
Polynomials
Rational expressions
±
√

Future
|x |
Simultaneous equations
Systems of inequalities

Distant future
Trig

Chris Sangwin (University of Edinburgh) Calculation and reasoning September 2016 21 / 38



STACK and RE

Working
Polynomials
Rational expressions
±
√

Future
|x |
Simultaneous equations
Systems of inequalities

Distant future
Trig

Chris Sangwin (University of Edinburgh) Calculation and reasoning September 2016 21 / 38



STACK and RE

Working
Polynomials
Rational expressions
±
√

Future
|x |
Simultaneous equations
Systems of inequalities

Distant future
Trig

Chris Sangwin (University of Edinburgh) Calculation and reasoning September 2016 21 / 38



Students and RE

Question 1: solve
x + 5
x − 7

− 5 =
4x − 40
13− x

.

Question 2: solve
√

3x + 4 = 2 +
√

x + 2.

(147 participants: amongst highest achieving students in their
generation)

Outline results Q1:
9.5% of students showed any evidence of logical connectives
2 students checked their answer
1 student explicitly considered domains of definition, e.g. x 6= 7

Outline results Q2:
60% of students “finished” this problem getting x = 7, x = −1
16% checked and eliminated one solution
4 students showed any evidence of checking domains
3 students used any logical connectives
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Teachers moaning about students....

There are few parts of algebra more important than the logic
of the derivation of equations, and few, unhappily, that are
treated in more slovenly fashion in elementary teaching.
Chrystal (1893)
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CAS and RE

Current worksheet interfaces to CAS mimic students’ approaches.
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Algebra and RE

To what extent do I want to automate current practice?

What are the alternatives?
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(Back 2010): “Structured derivations”

Find the values of a for which −x2 + ax + a− 3 < 0 holds for all x .

−x2 + a · x + a− 3 < 0
⇔ a− 3 < x2 − a · x
⇔ a− 3 <

(
x − a

2

)2 − a2

4
⇔ a2

4 + a− 3 <
(
x − a

2

)2

This inequality is required to be true for all x; it must be true when the
right hand side takes its minimum value. This happens for x=a/2.

a2 + 4 · a− 12 < 0
⇔ (a− 2) · (a + 6) < 0
⇔ (a > −6 ∧ a < 2) ∨ (a < −6 ∧ a > 2)
⇔ −6 < a ∧ a < 2
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Algebra and RE

Even if you abandon calculation to CAS, you have to set up
computational proofs!

CAS challenge: get your CAS to rewrite −x2 + ax + a− 3 < 0 as

(a− 2)(a + 6) < 4 ·
(

x − a
2

)2
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Student interface

Lots of design decisions:

Text area for input: freedom.

Should students be expected to show logic?
Should students indicate what they have done?
(Semi-automatic assessment of proofs?)
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Pell’s Algebra 1668
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To what extent can we change mathematics?

Pragmatists would say {}.

Use of natural domains?
Cancelling and tracking side conditions.
Multiplicities of roots.
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Modified rules

(1) Multiplication does not retain equivalence.

CA = CB ⇔ A = B ∨ C = 0. (1)
CA = CB ∧ C 6= 0⇔ A = B ∧ C 6= 0. (2)

A = B ⇔ (CA = CB ∧ C 6= 0) ∨ A = B = 0. (3)

(2) Powers and roots are evil.

A2 = B2 ⇔ A2 − B2 = 0
⇔ (A− B)(A + B) = 0
⇔ A = B ∨ A = −B.

(Auditing)
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Design of algebra/software

Immediate feedback: assessment system→ “algebra assistant”?

You appear to be implicitly enlarging the domain of x. Did you want
some help with that?
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MathExpert
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Aplusix - reasoning by equivalence
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EASy system
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Conclusion

Reasoning by equivalence and equating expressions are key
elementary concepts.

RE could be used to solve a wider range of problems than is
currently the case.
Personal opinion: we should pay more attention to them.
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Conclusion

Reasoning by equivalence will work in STACK.

Progressive development of equivalence classes
(e.g. adding inequalities).
Lots of options for the interface.
Can we change how algebra is taught?

I Layout of arguments and proofs.
I How we treat domains

An opportunity to reflect on how algebra is taught...
There are important other forms of reasoning beyond RE.
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