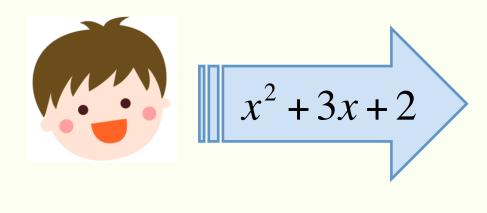
Mathematical Input Interface in E-Assessment Systems

EAMS 2016 Sep. 13th – 14th, 2016, Newcastle University

Shizuka Shirai and Tetsuo Fukui

Mukogawa Women's University

This work was supported by JSPS KAKENHI Grant Number JP26330413 and 16K16178.


Outline

- Motivation and Background of the Study
- 2.Reconstructed MathTOUCH
- 3. Evaluation
- 4. Summary and Future Plans

MOTIVATION AND BACKGROUND OF THE STUDY

Text-based interfaces

STACK Maple T.A. Math on Web

(x+1)(x+2) =

Structure-based interfaces

Text-based UI

Structure-based UI

000)	数式工	ディター	- EAMS	201609	09.pptx	の数式		
$\leq \neq \approx$	åab'∙.	* * *	$\pm \bullet \otimes$	$\rightarrow \Leftrightarrow \downarrow$.:.∀∃	∉∩⊂	∂∞ℓ	λωθ	ΛΩΘ
([]) [[]		II. 🖸	Σ¤Σ¤	∫⊡ ∮⊡			ΩŲ	000 0000	
$\frac{1}{2}x$			1000 (1000)						

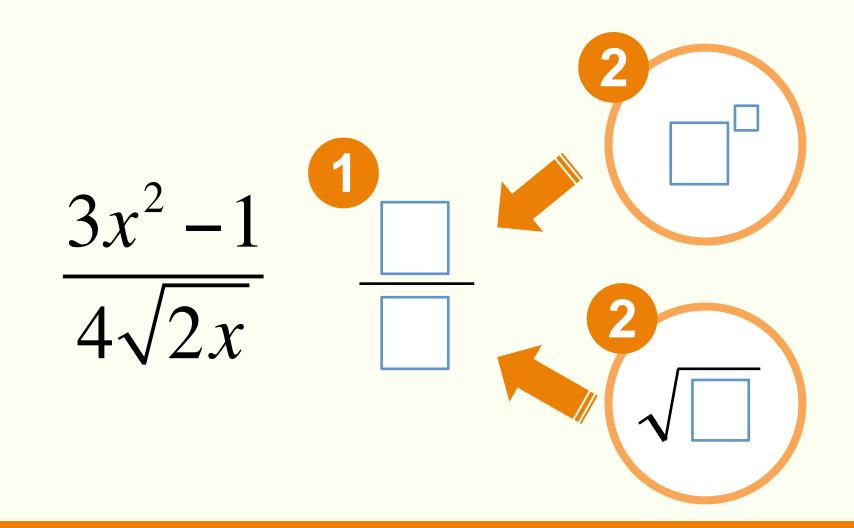
- Input only keyboard
- Input fast

$$\sqrt{5} \quad sqrt(5) \\ \sin^2 x \quad sin(x)^2 \quad sin^2 x \\ \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} matrix([-2,1],[3/2,-(1/2)])$$

Must remember CAS command syntax
Not WYSIWYG

3*y^4/2*x	

Text-based UI

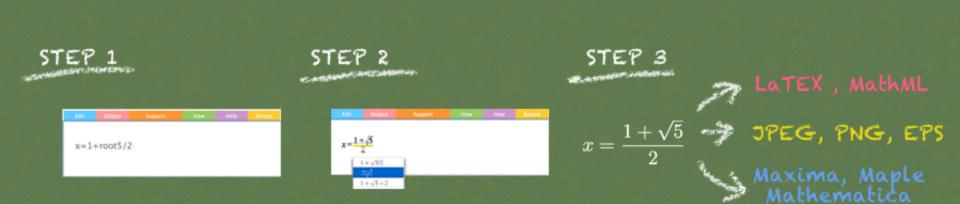

Structure-based UI

000)	数式工	ディター	- EAMS	201609	09.pptx	の数式		
$\leq \neq \approx$	åab'.	* .	$\pm \bullet \otimes$	$\rightarrow \Leftrightarrow \downarrow$.:.∀∃	∉∩⊂	∂∞ℓ	λωθ	ΛΩΘ
([]] ([])	0 √	II. Ū	Σ¤Σ¤	∫⊡ ∳⊡		_→	ΩŲ	000	
$\frac{1}{2}x$			MM (111)						

- Input only keyboard
- Input fast

- WYSIWYG editor
- Don't need to remember CAS command syntax

Must remember CAS command syntaxNot WYSIWYG

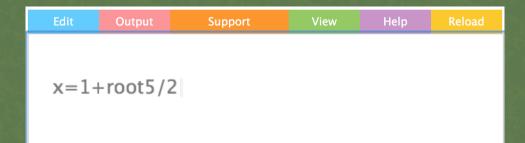


- First, need to understand structure
- Troublesome correcting errors

Edit	Output	Support	View	Help	Reload		
$\sin^2 x$							
► You can get the	You can get the results formatted as PNG.						
Completed	Mathematical Ex	oression					
This mathematical expr	ession can be copied and p	asted into another application in various	formats. Copy				
$\sin^2 x$							

Enter colloquial-style text. Chose the desired element from the list.

First, Enter the mathematical expressions using a colloquial-style linear string. A list of the conversion candidates is shown under the target letter. You can chose the desired element from this list.


Use the output expression in various formats.

You are able to paste the output expression onto a document with another application in various formats.

STEP 1

Enter colloquial-style text.

First, Enter the mathematical expressions Using colloquial-style linear string.

STEP 2

Chose the desired element from the list.

A list of the conversion candidates in shown under the target letter. You can choose the desired element from this list.

STEP 3

Use the output expression in various formats. $x = \frac{1+\sqrt{5}}{2}$ Maxima, Maple Mathematica

You are able to paste the output expression onto a document with another application in various formats.

- Proposed by Fukui (2011)
- Developed with JAVA
- Text-based + GUI
- No need to learn new command syntax

space) 📑 記号 選択 🖃	2: 配置要素 分離	Tab: <u>対象</u> 切替	Enter : 確定 exe	:取消 :やり直し
$x^{2} - 8x + 16$				
$\frac{x^2}{x^2}$				8
xp *2 ,2				

Linear String Rules

Set the key letters (or words) corresponding to the elements of a mathematical expression linearly in the order of colloquial (or reading) style, without considering two-dimensional placement and delimiters.

e.g.
$$\frac{1}{\alpha^2 + \frac{1}{\alpha^2 + \frac{1}$$

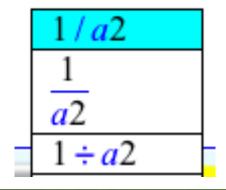
$$+3$$
 1 c

over alpha to the 2nd power plus 3

Rules	Inputting Linear string
Colloquial style	1/a2+3
CAS command (e.g., Maxima)	1/(a^2+3)
LaTeX	¥frac { 1 } {a^2+3 }

Linear String Rules

Example	MathTOUCH	Mathematica	Maple	Maxima
$5x^2 + 2$	5x2+2	$5*x^{(2)+2}$	$5*x^{(2)+2}$	$5*x^{(2)+2}$
$\sqrt{2}$	$\operatorname{root2}$	Sqrt[2]	sqrt(2)	sqrt(2)
$\sin^2 x$	$\sin 2x$	Sin[x]^(2)	$\sin(x)^{(2)}$	$\sin(x)^{(2)}$
$\log_{10} x$	log10x	Log[10,x]	log[10](x)	$\log(x)/\log(10)$
$e^{\pi x}$	epx	Exp[Pi*x]	exp(Pi*x)	e^(%pi*x)
$\sum_{k=1} k^2$	sumk=1nk2	Sum[k^(2),{k,1,n}]	sum(k^(2),k=1n)	sum(k^(2),k,1,n)
$\lim_{x \to 1} \frac{x}{2}$	limx>1x/2	Limit[x/2,x->1]	limit(x/2,x=1)	limit(x/2,x,1)
$rac{df}{dx}$	df/dx	D[f,x]	diff(f,x)	diff(f,x)
$\int_0^1 x \left(1 - x\right) dx$	int01x(1-x)dx	Integrate[x*(1-x),{x,0,1}]	int(x*(1-x),x=01)	integrate(f,x,0,1)

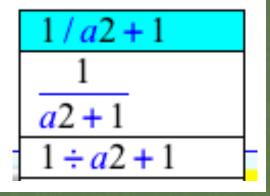

Just enter in colloquial style

1/a2+1

Step 1

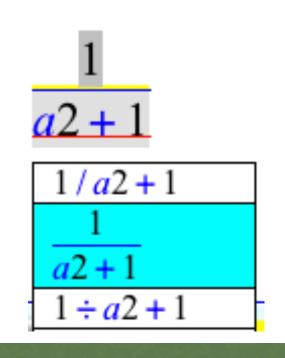
Input a linear string using a colloquial style. Not need to input ^ or (). e.g. 1/(a^2+1)

1 <mark>/ a2</mark> + 1

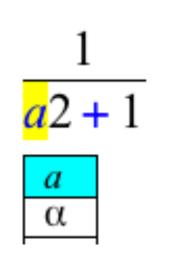


Step 2

Hit the space key to start conversion process. A list of the conversion candidates is shown.

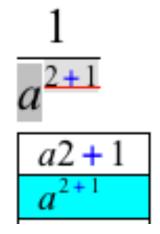

- : Conversion target
- : An operand

Step 3

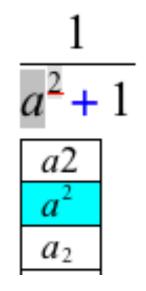

Extend the red line to include 1 by using the right arrow key.

Step 4

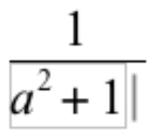
Chose the desired operator from among the candidates.

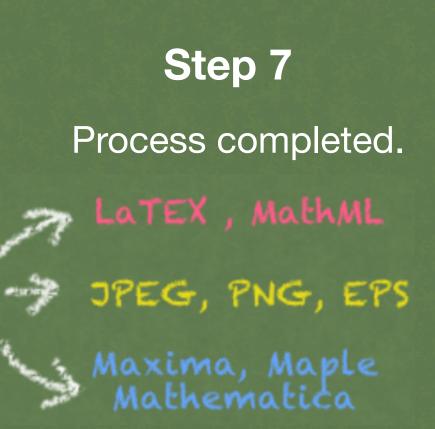

To switch the current candidate : Space or Arrow key To confirm the candidate : Enter key

Step 5

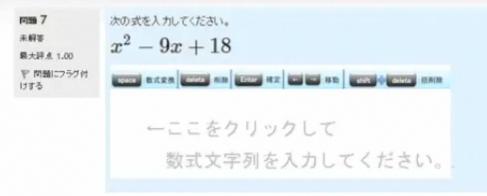

The conversion target moves on to next element to the right.

To switch the current candidate : Space or Arrow key To confirm candidate : Enter key


Step 6


The conversion target moves on to an unexpressed operator.

Step 7


Shorten the red line by using the left arrow key.

マイホーム ▶ マイコース ▶ 測定 ▶ 実験(MT) ▶ 測定 ▶ 計測

次へ

あなたは 11 高男としてロヴインしています (ログアウト)

実肤(MT)

Characteristics of MathTOUCH

Input in WYSIWYG with only keyboard
 No need to learn complex syntax

User-friendly for novice math learners

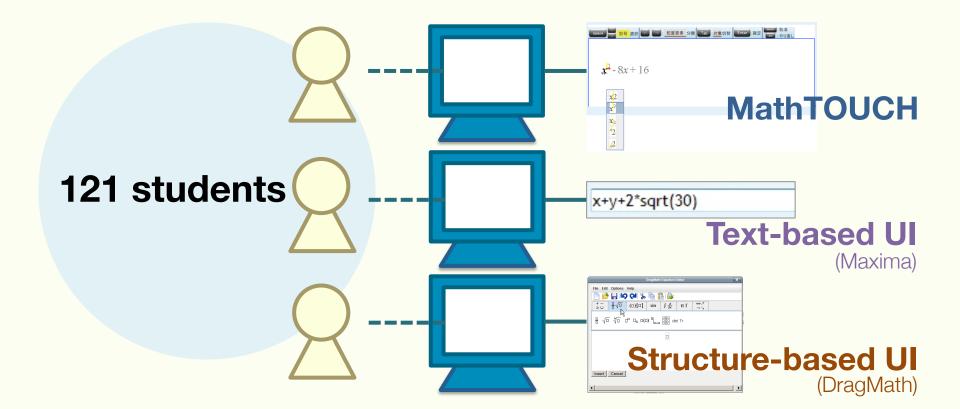
Evaluation of MathTOUCH

Performance Experimental performance test ^[1] Mathematical work The eight-week survey ^[2]

[1] S. Shirai, Y.Nakamura and T. Fukui, An Interactive Math Input Method for Computer Aided Assessment Systems in Mathematics (in Japanese), IPSJ Transactions on Computers and Education, Vol.1, No.3, pp.11 -21(2015).

[2] S.Shirai and T.Fukui, ImprovementintheInputofMathematicalFormulaeintoSTACKusing Interactive Methodology (in Japanese), Computer & Education 37, pp.85-90 (2014).

Evaluation of MathTOUCH


Performance Experimental performance test ^[1] Mathematical work The eight-week survey ^[2]

[1] S. Shirai, Y.Nakamura and T. Fukui, An Interactive Math Input Method for Computer Aided Assessment Systems in Mathematics (in Japanese), IPSJ Transactions on Computers and Education, Vol.1, No.3, pp.11 -21(2015).

[2] S.Shirai and T.Fukui, ImprovementintheInputofMathematicalFormulaeintoSTACKusing Interactive Methodology (in Japanese), Computer & Education 37, pp.85-90 (2014).

Objectives

We have investigated whether students are able to input mathematical expressions using **MathTOUCH** more smoothly than with the standard interfaces.

Results

Effectiveness	Task-performance rates
MathTOUCH :	97.1%
Text-based UI : 89.7%	Structure-based UI: 94.1%
Efficiency	Task-performance times
MathTOUCH :	24.3 seconds
Text-based UI : 28.8 se	ec. Structure-based UI : 39.0 sec.
SatisfactionEfficiency: M1Memorability: M1	
-	> Text-based UI

Evaluation of MathTOUCH

Performance Experimental performance test ^[1] Mathematical work The eight-week survey ^[2]

[1] S. Shirai, Y.Nakamura and T. Fukui, An Interactive Math Input Method for Computer Aided Assessment Systems in Mathematics (in Japanese), IPSJ Transactions on Computers and Education, Vol.1, No.3, pp.11 -21(2015).

[2] S.Shirai and T.Fukui, ImprovementintheInputofMathematicalFormulaeintoSTACKusing Interactive Methodology (in Japanese), Computer & Education 37, pp.85-90 (2014).

Objectives

We have investigated whether students were able to practice mathematical work using MathTOUCH on STACK.

- Are students able to practice mathematical work using MathTOUCH with the same learning rate as with the current interface on STACK?
- 2. Is MathTOUCH able to improve the usability of math input on STACK?

Results

- 1. Are students able to practice mathematical work using MathTOUCH with the same learning rate as with the current interface on STACK?
 - They were able to practice using MathTOUCH with the same proficiency rate.
- 2. Is MathTOUCH able to improve the usability of math input on STACK?
 Satisfaction of "Memorability" was
 - significantly higher than the current interface.

Characteristics of MathTOUCH

- ✓ Input in WYSIWYG with only keyboard
- ✓ No need to learn complex syntax
- Has better input performance than structure-based and Text-based interfaces.

However, the user has to use a JAVA-compliant device

Advantage and Disadvantage Developed with JAVA

Advantage

• JAVA will allow us to easily plug JAVA applet into various systems.

Disadvantage

- The user has to use a JAVA-compliant device.
- It's hard to use in institutions due to security concerns.

Objectives in this study

We make MahTOUCH available not only on JAVA-compliant devices but also on various devices.

- 1. We reconstruct MathTOUCH using JavaScript.
- We investigate whether students are able to practice mathematical work using reconstructed MathTOUCH with the same learning rate as with MathTOUCH with JAVA.

RECONSTRUCTED MATHTOUCH

http://math.mukogawa-u.ac.jp/en/

Edit	Support	Fonts	Help	Reload
$x^{\mu} - 8x + 16$				
x2				
$\frac{x^2}{x^2}$				
x_2				
$\frac{2}{x^2}$ rt message	es will be displayed on t	this area.		
X12				
*2				
×2				

http://math.mukogawa-u.ac.jp/en/

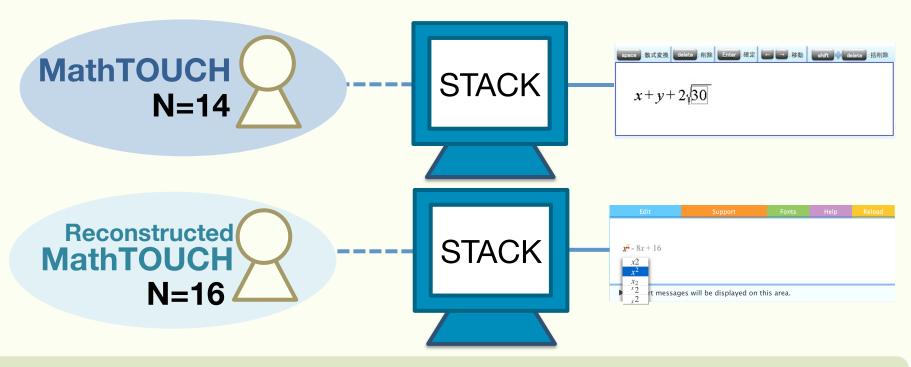
- Developed with JaveScript (HTML5).
- Used MathJax for conversion candidates.
- Added an edit function
- Enhanced the support function.

DEMO

Please enter the following expression.

$x^2 - 8x + 16$

Support	Fonts	Help	Reload			
ntor a colloquial, stu	la mathama	tical taxt				
Click here to enter a colloquial-style mathematical text.						
Support messages will be displayed on this area.						
	nter a colloquial-sty	nter a colloquial-style mathema	nter a colloquial-style mathematical text.			


EVALUATION

Objectives

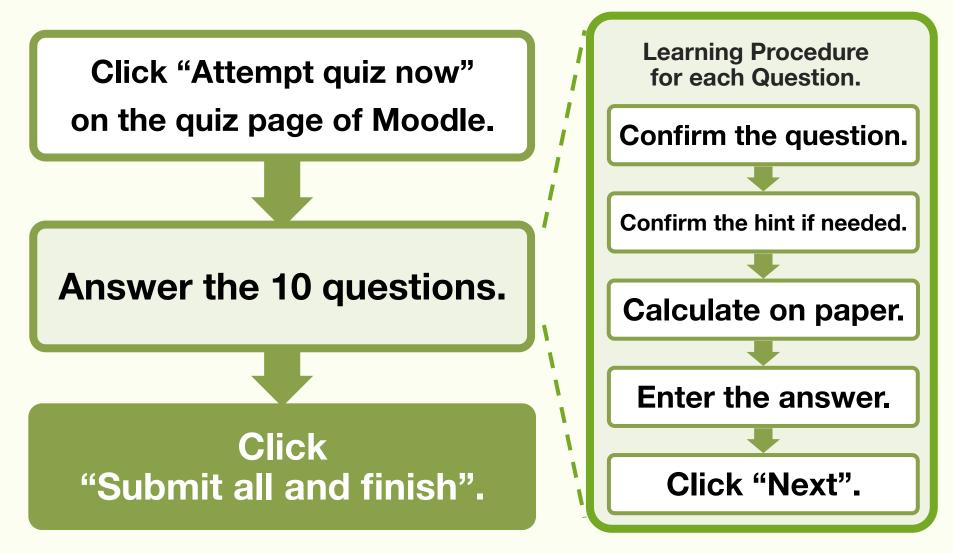
We have investigated whether students were able to practice mathematical work using **reconstructed MathTOUCH** on **STACK**.

- Are students able to practice mathematical work using reconstructed MathTOUCH with the same learning rate as with MathTOUCH using JAVA?
- 2. Is reconstructed MathTOUCH able to improve the usability of math input on **STACK**?

Procedure

- 30 students are assigned to two groups.
- They practiced mathematical work on STACK for 5 weeks.
- Made a measurement of the solving times, the percentage of correct answers, learning rates and Questionnaire of Usability.

Learning Contents


Example of mathematical expressions used in mathematical work

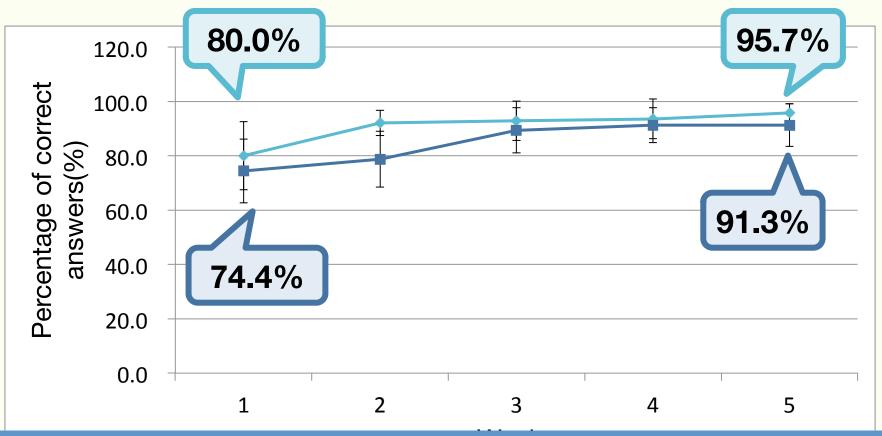
$$\sqrt{20} \times 2\sqrt{2} \div \sqrt{5}$$
 $\sqrt{50} - 4\sqrt{2} \div \frac{6}{\sqrt{2}}$

- Simple mathematical calculation
- 10 questions once a week

Measurement of Solving Times

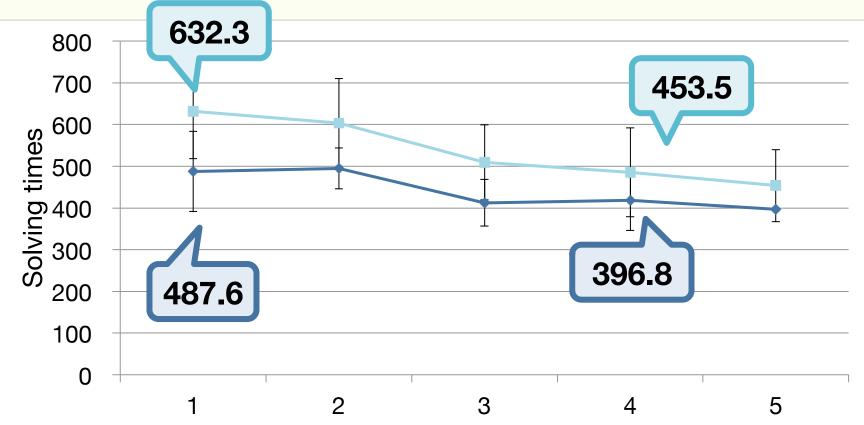
Use response time by measurement of Moodle

Questionnaire of Usability Satisfaction


We gave a questionnaire regarding subjective satisfaction about each interface using a 5-point rating scale from 1(strongly disagree) to 5(strongly agree).

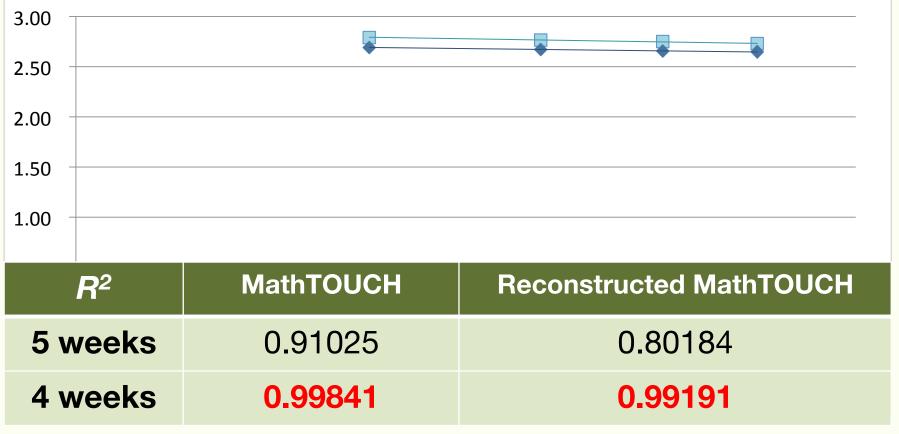
Contents of the questionnaire

- 1 It was easy to master the use of this UI. Learnability
- 2 Mathematical expressions could be inputted smoothly using this UI. Efficiency
- 3 It was easy for me to correct mis-entered operations. Error
- 4 I remember how to use this UI from first time which is given the explanations later. Memorability
- ⁵ Would you like to use this UI when you enter the mathematical expressions? Loyalty


RESULTS

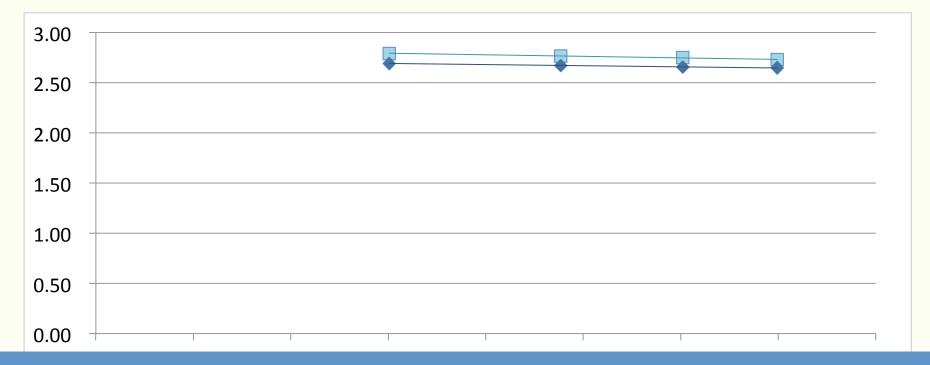
Percentage of correct

No significant difference for the percentage of correct answers between MathTOUCH and the reconstructed MathTOUCH for each week.

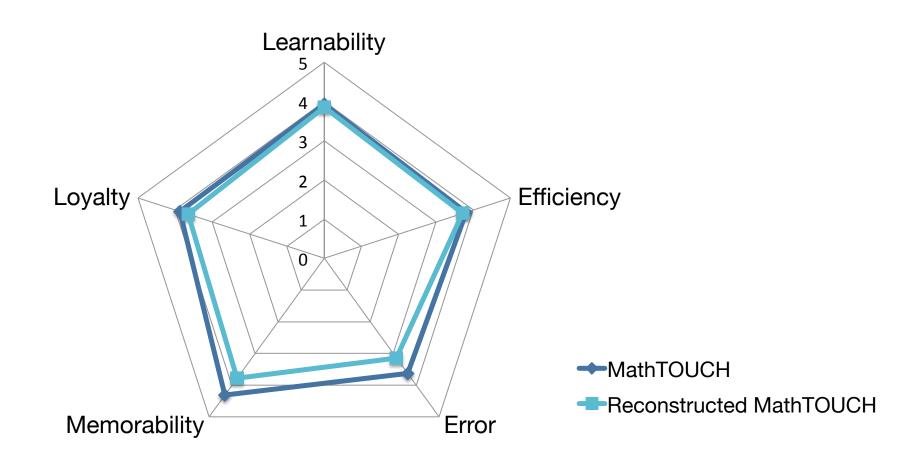

Solving times

No significant difference for the solving times between MathTOUCH and reconstructed MathTOUCH for each week.

Learning rate


Calculated using the transition of response time. Evaluated proficiency rates on the presumption that it follows a log-linear model by progressive average ^[4].

[4] Kozi Morooka: Proficiency Engineering, Kenpaku-sha (1994)


Learning rate

Calculated using the transition of response time. Evaluated proficiency rates on the presumption that it follows a log-linear model by progressive average ^[4].

Reconstructed MathTOUCH : 92.4% MathTOUCH : 89.9%

Results of Questionnaire

No significant difference between MathTOUCH and reconstructed MathTOUCH.

SUMMARY AND FUTURE PLANS

Summary and Future Plans

- We have reconstructed MathTOUCH using JavaScript.
- Our experiments have shown that students are able to practice mathematical work using reconstructed MathTOUCH with the same proficiency rate as with MathTOUCH by JAVA.

Future plans

- Make the conversion prediction of MathTOUCH intelligent using machine learning.
- Develop interface for smart devices.