
e-Assessment of 
graph enumeration problems in 
Discrete Mathematics courses

Andrey Chesnokov
Institute for Mathematical Sciences
NTNU
Joint work with Hans J Rivertz and Siebe Van Albada

N
o

rw
e

g
ia

n
 U

ni
ve

rs
ity

o
f

S
ci

e
n

ce
 a

n
d

 T
ec

h
no

lo
g

y



2

Student group

• Bachelor in Cyber Security/Programming (200 students)

• 1st year, 1st semester, 7.5 credits

• The only mathematics course during studies

• No strong prerequisites in mathematics

• No prior programming knowledge



3

Discrete mathematics

• Set theory, logic

• Combinatorics

• Number theory and some crypto

• Graphs

• (Very limited) Linear algebra



4

Graph theory

• Many relevant applications, fx network analysis, TSP

• Focus on algorithms (BFS, DFS, Dijkstra’s, Prims)

• But: inductive proofs are hard to comprehend. 

• Many students do equivalents of this:



5

Teacher challenge 1: 
break this pattern

Dear students please start doing this:

• Start producing something authentical

• Find arguments for what you are doing is correct
(essentially: why do we need a proof)

• Practice in constructing algorithms

• (essentially: working systematic and being aware of the
system)



Graph enumeration problems

• Classical subject
• Example: List all trees on

5 vertices
• (usually easy): find some
• (usually difficult): find all
• Good training in pure 

concepts (e.g. what is a 
tree) and isomorphy: are
two graphs the same or 
not?



«Give an example»-type of problems

• Goldenberg, Mason, 2008. 
Shedding light on and with
example spaces

• Simply ‘giving’ examples 
and construction 
techniques is rarely 
sufficient for most learners. 
Most learners need to 
(re)construct examples in 
order to populate their 
example space

• Give one example
• Give two
• …
• Why are you done 

now?



8

Teacher challenge 2: assess all this

• 200 students, many online. Manual grading: not feasible.
– Issue 1: too many students

– Issue 2: too demanding compared to quadratic equations
(pictures found on stackexchange)



9

What we want at the end

• Make problem simpler (Polya. How to solve it, 1976)

• Look at how structure develops when a parameter grows
(pic: Shin-ichi Nakano, Enc.Alg., 2016)

• This is something we focus at during interactions



10

Teacher challenge 3: automate it

• We need to input graphs!

• Three rep forms: matrix, list, drawing

• Matrices: a lot of entries! And permutations.
(Q: find a disconnected graph on 5 nodes with 5 connected
components)



11

Teacher challenge 3: automate it

• We need to input graphs!

• Three rep forms: matrix, list, drawing

• Lists: Gets long as well. And permutations. Error-prone
(Pic: algotree.com)



12

What exactly is student’s issue?

• Is it under «tree» concept or under «matrix» concept?

• Is it under «being connected» concept or «list» concept?
(remember 1st year, 1st semester)

• Student panel feedback:
Many complain that difficult input makes them hate system



13

Teacher challenge 3: automate it

• We need to input graphs!

• Three rep forms: matrix, list, drawing

• Drawing: easy for small graphs. Natural rep for 
beginners.

• But how to input into a CAS?



14

Solution: CodeRunner for Moodle

• Solution: CodeRunner, a plugin for Moodle

• Citing https://moodle.org/plugins/qtype_coderunner
A question type that allows question authors to set programming 
questions in which the student answer is code in some 
programming language, which is graded by running it.

• Surprisingly, there is an input type that allows to draw 
graphs (and outputs a list structure)

• There is a python package networkx that can do graphs
https://networkx.org/

• So, we let students draw, get a CodeRunner structure, 
convert it to networkx and just write for example


