

THE UNIVERSITY of EDINBURGH School of Mathematics

Using item response theory to evaluate a test

Dr George Kinnear G.Kinnear@ed.ac.uk

Outline

- Background of the test
- Analysis using item response theory
- Implementing and evaluating changes

The Mathematics Diagnostic Test (MDT)

- Administered online to incoming students
 - to help them study
 - to inform decisions
- Multiple choice and numerical answers
- Based on SQA Higher content

Improvement project 2017-18

Analysis

The data

- Raw scores for tests taken in 2013-2016
- Linked to student records (gender, entry qualifications, course results, ...)

The data

 "Non-serious" attempts were identified and removed

Total scores frequency: 3248 students

Total score (0-100)

Item Response Curves

Item Information Curves

Item Information Curves

Implementing changes

Changes informed by IRT

- Three questions were removed (Q2, Q8, Q11)
- These were selected because they provided low information
- Three questions were created to replace them

Replacement example

NQ11

Find the angle between the vectors (-3, -4, 5) and (-2, -4, -5).

Give your answer in radians, accurate to at least 3 decimal places.

A chemical factory has a rectangular room, with corners A, O and B as shown. The floor of the room is $2 \text{ m} \times 5 \text{ m}$ and the height of the room is 2 m.

An engineer needs to bend a pipe at O so that it runs in a straight line from A to O, then bends at O, and then runs in a straight line from O to B.

What is the angle of the bend at *Q*? Give your answer in degrees, correct to at least 1 decimal place.

Evaluating the changes

THE UNIVERSITY of EDINBURGH School of Mathematics

6-Information 4. 2 -0. -2 2 -4 0 Ability

Test Information Curve

IRT results

- The new test gives more information about ability
- The information is better at higher abilities

Test Information Curve

Question Set

Predictive validity

- The new test is also a better predictor of success in Year 1 mathematics
 - Introduction to Linear Algebra (Semester 1)
 - Calculus and its Applications (Semester 2)

Conclusion

- Item response theory can be a useful tool when evaluating the performance of a test
- Removing poorly-performing questions makes the test better!

Thank you!

Acknowledgements

 Statistical analysis was carried out by project students: Chito Wang, Tereza Burgetova and Joanne Ruth Imanuel

The project was funded by the Principal's Teaching Award Scheme at the University of Edinburgh